Eigenvalues and Transduction of Morphic Sequences: Extended Version
نویسندگان
چکیده
We study finite state transduction of automatic and morphic sequences. Dekking [4] proved that morphic sequences are closed under transduction and in particular morphic images. We present a simple proof of this fact, and use the construction in the proof to show that non-erasing transductions preserve a condition called α-substitutivity. Roughly, a sequence is α-substitutive if the sequence can be obtained as the limit of iterating a substitution with dominant eigenvalue α. Our results culminate in the following fact: for multiplicatively independent real numbers α and β, if v is a α-substitutive sequence and w is an β-substitutive sequence, then v and w have no common non-erasing transducts except for the ultimately periodic sequences. We rely on Cobham’s theorem for substitutions, a recent result of Durand [5].
منابع مشابه
Decidability of Uniform Recurrence of Morphic Sequences
We prove that the uniform recurrence of morphic sequences is decidable. For this we show that the number of derived sequences of uniformly recurrent morphic sequences is bounded. As a corollary we obtain that uniformly recurrent morphic sequences are primitive substitutive sequences.
متن کاملA Taxonomy of Morphic Sequences
In this note we classify sequences according to whether they are morphic, pure morphic, uniform morphic, pure uniform morphic, primitive morphic, or pure primitive morphic, and for each possibility we either give an example or prove that no example is possible.
متن کاملOn Uniformly Recurrent Morphic Sequences
In the paper we mainly deal with two well-known types of in nite words: morphic and uniformly recurrent (=almost periodic). We discuss the problem of nding criterion of uniform recurrence for morphic sequences and give e ective polynomial-time such criterion in two particular cases: pure morphic sequences and automatic sequences. We also prove that factor complexity of arbitrary uniformly recur...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملOn Subword Complexity of Morphic Sequences
We study structure of pure morphic and morphic sequences and prove the following result: the subword complexity of arbitrary morphic sequence is either Θ(n) for some k ∈ N, or is
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1406.1754 شماره
صفحات -
تاریخ انتشار 2014